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Stability of the compressible laminar boundary layer 

By LESTER LEES AND ELI RESHOTKOt 
Guggenheim Aeronautical Laboratory, California Institute of Technology, 

Pasadena, California 

(Received 21 July 1961 and in revised form 3 November 1961) 

In  previous theoretical treatments of the stability of the compressible laminar 
boundary layer, the effect of the temperature fluctuations on the viscous (rapidly 
varying) disturbances is accounted for incompletely. A thorough re-examination 
of this problem shows that temperature fluctuations have a profound influence 
on both the inviscid (slowly varying) and viscous disturbances above a Mach 
number of about 2.0. The present analysis includes the effect of temperature 
fluctuations on the viscosity and thermal conductivity and also introduces the 
viscous dissipation term that was dropped in the earlier theoretical treatments. 

Some important results of the present study are: (1) the rate of conversion of 
energy from the mean flow to the disturbance flow through the action of viscosity 
in the vicinity of the wall increases with Mach number; (2) instead of being nearly 
constant across the boundary layer, the amplitude of inviscid pressure fluctua- 
tions for Mach numbers greater than 3 decreases markedly with distance outward 
from the plate surface. This behaviour means that the jump in magnitude of the 
Reynolds stress in the neighbourhood of the critical layer is greatly reduced; 
(3) at Mach numbers less than about 2, dissipation eRects are minor, but they 
become extremely important at higher Mach numbers, since for neutral distur- 
bances they must compensate for the generally destabilizing effeots of items (1) 
and (2); (4) the minimum critical Reynolds number for an insulated flat plate 
boundary layer decreases with increasing Mach number in the range 0 6 Me < 3.$ 
Since the wave-number varies like 1/M: when N, 9 1, the minimum critical 
Reynolds number is likely to increase sharply at hypersonic speeds. 

Numerical examples illustrating the effects of compressibility, including 
neutral stability characteristics, are obtained and are compared with the experi- 
mental results of Laufer & Vrebalovich (1960) at Mach 2.2, and of Demetriades 
(1960) at Mach 5.8. 

1. Introduction 
The stability of a compressible laminar boundary layer to infinitesimal distur- 

bances was first analysed by Lees & Lin (1 946) and Lees (1 947). Their study was 
in the form of an extension to compressible flow of the principles and techniques 
already formulated for the study of the stability of incompressible laminar 
boundary layers. Lees & Lin uncovered some of the important changes, both 

t Now at Lewis Research Center-NASA, Cleveland, Ohio. 
$- A full list of symbols is given at the end of this paper. 
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physical and mathematical, that are incurred by considering compressibility in 
the stability analysis. More recently there have been additional analyses (Cheng 
1953; Dunn 1953; Dunn & Lin 1955) and also two experiments (Laufer & 
Vrebalovich 1958, 1960; Demetriades 1958, 1960), which have clarified the 
stability picture for subsonic and slightly supersonic boundary layers, but have 
hardly been successful in the case of supersonic and hypersonic laminar boundary 
layers. The purpose of the present study is to probe into the effects of compressi- 
bility on the various physical processes associated with the stability phenomenon. 

The present study considers only ‘subsonic ’ disturbances, that is, disturbances 
whose propagation velocity is subsonic with respect to the free-stream velocity 
[(l - l/MJ < c < 11. (See end of paper for definition of symbols.) Such distur- 
bances have amplitudes that decay exponentially in the free stream. A distur- 
bance that propagates supersonically with respect to the free stream would be 
expected to have a non-vanishing amplitude far from the wall. It may be noted 
that, in the recent experiment at Mach number 2.2 by Laufer & Vrebalovich 
(1958, 1960), supersonic disturbances were not detected and reasonable agree- 
ment was obtained with the theory of infinitesimal subsonic disturbances. 

For subsonic and slightly supersonic flows, Lees & Lin (1946) concluded that 
the stability characteristics of a given boundary-layer profile are unaffected by 
the boundary conditions on temperature fluctuations. More specifically, the 
characteristics are determined by satisfying only the velocity-fluctuation 
boundary conditions. Dunn & Lin (1955) found that this conclusion is not valid 
for moderately high supersonic Mach numbers, and they gave some discussion of 
the thermal boundary condition. However, they did not present any calculations 
that include consideration of the energy equation and thermal boundary 
conditions. 

The analyses of Lees & Lin and Dunn & Lin are first-order asymptotic approxi- 
mations valid when a parameter (aRe), the product of wave-number and Reynolds 
number, is very large. Among the terms that do not enter into this first asymptotic 
approximation are terms involving dissipation and terms involving fluctuating 
viscosity and fluctuating thermal conductivity. Cheng (1953) points out that 
terms involving vertical velocity enter into the second approximation. It will be 
pointed out later that a dissipation term and some terms involving fluctuating 
transport properties also enter in the second approximation. Since some of these 
terms increase in magnitude with increase in Mach number, it  is necessary to 
include them at high Mach number. 

In  the past, approximate methods have been used to solve the asymptotic 
equations. These methods were valid only for small values of the wave-number 
and for propagation velocities that are not very close to the free-stream velocity. 
Por supersonic and hypersonic Mach numbers, larger values of wave-number 
and propagation velocities approaching free-stream velocity are encountered 
and more exact numerical methods will be considered. 

The present study then considers the stability of two-dimensional compressible 
laminar boundary layers to two-dimensional subsonic disturbances. Only the 
simplest model of a compressible gas is considered-namely, one with constant 
specific heats, constant Prandtl number, and viscosity a function of temperature 
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alone. The analysis considers both insulated and uninsulated surfaces; however, 
the numerical examples will be for insulated surfaces only, and comparison will be 
made with the experimental findings of Laufer & Vrebalovich (1958,1960) and of 
Demetriades (1958, 1960). 

Lastly, in $ 5  the effects of compressibility on the physical concepts of the 
boundary-layer stability phenomenon are discussed with the aid of some approxi- 
mate calculations. Those readers having some familiarity with the stability 
problem at low speeds may want to read this section first. 

2. Formulation of problem 

Quantities of the total flow such as velocity and temperature are considered to be 
composed of a mean or steady component that depends only on the space co- 
ordinates, and a space-and-time-dependent fluctuating component of infinites- 
imal magnitude ; thus 

2.1. Differential equations for inJinitesima1 disturbances 

Q(x ,  Y, t )  = &(x, Y) +Q’(x, Y, t ) .  (1) 

Because the fluctuation amplitudes are very small compared to the mean flow 
quantities, products and squares of fluctuation quantities are neglected. The 
resulting disturbance equations are then linear partial differential equations in 
the variables x, y and t. 

If the mean flow & is a time-independent parallel flow (no mean normal 
velocities), and if in addition Q is independent of x (fully developed flow), then 
the coefficients of the linear partial differential disturbance equations are inde- 
pendent of both x and t and a disturbance of the form 

( 2 )  Q’ = q(y)  eidr-ct) 

will reduce the disturbance equations to ordinary differential equations in y alone. 
The disturbance amplitude q(y)  and the propagation velocity c in equation (2) are 
taken to be complex. Disturbances are amplified, neutral, or damped according 
to whether ci > 0,  ci = 0, or ci < 0, respectively. The real part c, is the dimension- 
less wave speed.t 

Lees & Lin (1946) proposed the use of the parallel-flow disturbance equations 
for ‘nearly-parallel ’ boundary-layer flows. Therefore, they omitted terms of the 
following types from the complete disturbance equations: (1) terms involving 
mean normal velocity V* (the ratio P I E *  is of order M:/Re6 or Mt/Re, and is 
assumed to be small for high Reynolds numbers); (2) longitudinal derivatives of 
mean flow quantities as compared with their normal derivatives; and (3) longitu- 
dinal derivatives of disturbance amplitudes. For a disturbance of the form ( a ) ,  

t Equation ( 2 )  is not the only disturbance form possible for parallel flows. It is of some 
interest in fact to investigate amplified and damped disturbances of the form 

&’ = p(y) eBz eia(z-ct), 

where a, /3, and c are all real. Here /3 = (&‘2)-* a{(@)}*/& is the amplification coefficient. 
For neutral disturbances, /3 = 0,  and the analysis is the same m that for ci = 0 in 
equation ( 2 ) .  
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the dimensionless equations for infinitesimal disturbances in a nearly parallel 
mean flow are as follows (Lees & Lin 1946): 

Momentum : 
Continuity: $‘+if-(T‘/T)Q+i(w-c) (..-BIT) = 0. (3) 

ap[i(w - c ) f +  w’#] = - (iczn/yirz) + (p/Re) [ f ” +  az(i$’ - 2 f ) ]  

a2p[i(w - c )  $1 = - (m’/yir;)+ ( p a / R e )  (2$”+ i f ’  -az$) 
+(2/3Re)(p2-pu)a2(i$’-f)+ [mw”+m’w’+p’(f’+icz2#)1, (4) 

+ (2/3Be)a(pu,-p) ($”+if’)+ @ / R e )  [imw’+2p’$’+ g(ph-p’) ($’+if)]. ( 5 )  

Energy: 

ap[i(w-c)@+ F’$] = ia(w -c)  ( 1  -y-l)..+ [ (y - l ) i r , 2 /Re]  

x [ m ~ ’ ~  +2,uw’(f’+ia2$)]+ ( l / v B e )  [p(B”-a20)+ (mT’)’+p’O’]. ( 6 )  

The density fluctuations have been eliminated in the preceding equations 
through the equation of state: r /p  = n-(B/T). The energy equation (6) differs 
slightly from that of Lees & Lin in that it is derived from the enthalpy equation 
rather than from the internal-energy equation. The fluctuating viscosity can be 
related to the temperature fluctuation through m = B(dp/dT), while the normal 
gradient of mean viscosity can be expressed as p‘ = T’(dp/dT). 

2.2. Boundary conditions 

For flows over non-porous surfaces, the longitudinal and normal velocity com- 
ponents of the total unsteady flow must vanish at  the surface. Since the mean 
flow already satisfies these conditions, the disturbance-velocity amplitudes must 
also vanish at  the surface. Thus, 

f ,  = 0, 4, =o.  (7,8) 

The thermal boundary condition for the total unsteady flow is that the instan- 
taneous temperature and heat transfer must be continuous across the solid-gas 
interface. However, most surface materials are highly conductive compared to 
gases and so would immediately damp any temperature fluctuations at the 
frequencies of interest for laminar stability. Therefore, we take-f 

e, = 0. (0) 

Since only subsonic disturbances are here considered (see $ l), all disturbance 
amplitudes vanish far from the wall, i.e., 

q(y)-+ 0 as y+m. (10)  

3. Solution of differential equations 
As discussed in Lees & Lin (1946) ,  the disturbance equations (3) to (6) are 

regular everywhere except in the limit y -+ 00; and the solutions of these equations 
are analytic functions of a, c, and R e  for all finite values of these parameters. In  

t The formulation of the stability problem for the more general thermal boundary 
condition a0; + be,  = 0 is given in Appendix F of Reshotko (1960). 
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principle, solutions could be constructed as convergent series expansions around 
one or more regular points, and these series could be properly joined to exponen- 
tially decaying functions as y +- co. However, the quantity (aRe)-l appears in the 
disturbance equations as a parameter multiplying the highest-order derivatives, 
and it is attractive to consider asymptotic expansions valid for (aRe) 9 1. 

In  particular, we inquire as to the significance of the solutions obtained in the 
limit of (aRe) + co. In  general, these ‘inviscid’ solutions are certainly incapable 
of satisfying the boundary conditions f, = 0 and #, = 0 at the surface. Thus, for 
any finite value of (aRe), viscous solutions that take on the values - ( fJinv and 
( -Bw)i,lv at  the surface must always be added (see figure I), and the situation 
locally has some of the characteristics of the oscillating plate problem. Since the 
parameter (aRe)-i measures the relative diffusion distance for vorticity during 

A 

Viscous solution 

(f”L = - (A“,), 0 (A”“), 
FIGURE 1. Schematic representation of viscous and inviscid solutions for f near surface. 

(A similar sketch could be drawn for 0.)  

one period [or (aRecT)-* measures the corresponding diffusion distance for heat 
energy], this ‘inner boundary layer’ is thin when (aRe) 9 1. Thus we are led to 
adopt Prandtl’s (Prandtl 1935) division of the disturbances into slowly varying 
functions that are largely inviscid across the entire flow, and ‘viscous ’ rapidly 
varying functions near the surface. Because of the steep slope of the viscous 
solutions (figure l), it is clear that the effect of viscous dissipation at high Mach 
numbers cannot be neglected a priori. 

Of course, the value of aRe is not arbitrary; for a neutral disturbance (for 
example) it is uniquely determined by the local velocity-temperature profile and 
the local Mach number. At present there is no way of determining in advance 
whether the quantity aRe is always ‘sufficiently large’ for a neutral disturbance 
a t  high Mach numbers. Therefore, we shall proceed provisionally with Prandtl’s 
suggestion, just as previous investigators have done for low-speed flow or moder- 
ate supersonic Mach numbers. However, this splitting of the solutions must 
be re-examined a posteriori to determine the conditions under which it is in fact 
justified and, conversely, the conditions under which we must return to the 
more complete disturbance equations (3) to (6). 
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3.1. Inviscid solution 

Following Rayleigh, Heisenberg, and Lin, a solution to the disturbance equations 
of the form 

The resulting equations for the zeroth approximation (ao) representing 

P(Y) = qo(y)+ (l/aRe)q,(y)+ * . *  is sought. 

lim 4(Y)  
aRe+ w 

for fixed y are called the inviscid equations, since they are identical with the 
equations obtained by ignoring viscosity and conductivity altogether. The 
inviscid equations are: 

Continuity : $'+if  - ( T r / T ) $ + i ( w - c ) [ ~ - ( 6 / T ) ]  = 0. ( 1 1 )  

Momentum : ip(w -c)  f +pw'$ = -in/yM,2, ( 1 2 )  

(13) 

Energy : ip(w-c)O+pT'$ = i ( ~ - ~ ) ( l  -y-l)n.  (14 )  

ia'p(w -c) $ = -n'/yM2,. 

The subscript zero is omitted since the qo functions are the only ones that will be 
obtained in this manner. 

In  the present analysis, following a suggestion of Lighthill (1950) and some work 
on panel flutter by Miles (1959), the inviscid equation will be written in terms of 
the pressure fluctuation amplitude n. The boundary condition that the inviscid 
solution must always satisfy is that the normal velocity fluctuation vanish in the 
outer inviscid flow. If viscosity and conductivity are ignored (aRe -+ m), the 
inviscid normal-velocity-fluctuation amplitude must also vanish a t  the wall; 
therefore, for aRe --f 00, ~ ' ( 0 )  = 0 by equation (13). However, for aRe large but 
finite, $inv(O) = -$v(0) + 0, and thus n;nv(O) + 0. 

The inviscid equation and boundary conditions are 

~ ' ( 0 )  = 0 (for aRe -+ m only), ( 1 6 )  

n(a3) + 0. (17) 

G = n'/a2n, (18 )  

By means of the standard transformation 

equation (15) can be converted into the following first-order non-linear equation 
of the Riccati type 

w -c 

The outer boundary condition on G is obtained by considering equation (15) 
for large y 

whose solutions are 
(20) 

(21  1 

n"-a2[1 -M;(l  -c)']T = 0, 

n - exp [ & { 1 - M,2( 1 - c ) ~ ) $  y]. 
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Since n(co)+O, the negative exponent is chosen in equation (21), and the 
boundary conditions on G are 

G(0)  = 0 (for aRe --f co only), G(co) = -{1 -N2,(1 -c)”*/a. (22a, b)  

It is instructive at this point to transform the inviscid equation by introducing 
a Dorodnitsyn-Howarth independent variable. In  this form, the boundary-layer 
thickness is normalized. 

For (23)  

and 

the inviscid equation (19) becomes 

where Tref is some representative boundary-layer temperature of order 1 for 
low-speed flows but of order ME for high-speed flows. 

Following Heisenberg, it has been customary in the past to solve the inviscid 
equation in the form of a convergent series in powers of a2. Equation (25)  suggests 
that the proper expansion parameter for the compressible inviscid solutions is 
(aTref)2 or ( ~ & 2 , ) ~  rather than a2. At high Mach number, even for small a, the 
quantity (aTref) may not be small, so that the complete equation (25 )  must be 
considered. 

Of course if the non-linear term in equation (19), a2G2, is suppressed, we obtain 
immediately the solution corresponding to the zeroth-order inviscid solution of 
Lees & Lin (1946)) namely 

where 

Equation (19) is a complex equation and for purposes of solution should be 
divided into real and imaginary parts. Also, there is a regular singularity of 
equation (19) at the point where w = c. This point is often called the ‘critical 
point ’. The solution in the neighbourhood of this singular point is obtained by 
series expansion (method of Frobenius), the details of which are given in Reshotko 
(1960). For a neutral disturbance (ci = 0) ,  t the resulting behaviour of G about the 
critical point is 

Gr = - (Y  - Y J  -A(Y -YA21n IY -YcI + (const.) (Y -Yc)2--2(Y -YJ31n IY -Ycl 

For (Y -YJ  > 0, Gi = 0, (27 a )  
and for ( y  - y,) < 0, 

+ [A(const.) - ( 2 B  - 2A2 + M ;  wL2/T, + a2)] ( y  - yc)3+ . . . . (26)  

G, = - 4 y  - ycI2 [ I +  A ( y  - y,) + . . . I.$ (27b)  
f The developments for amplified and damped oscillations (ci + 0) are very similar and 

$ The 7~ appearing without subscript in equation (27b)  is 3.14159.. .. 
are given in Appendix B of Reshotlro (1960). 

36 Fluid Mech. 12 
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/ 

Here 

and 

FIGURE 3. Inviscid solution for general disturbance (A + 0, c + cs). 

Gr(0) = G,(O) = 0. From the imaginary part of equation (19), it is seen im- 
mediately that if Gi is zero at  the wall, then Gi must be zero everywhere. Thus, 
from equation (27b), a necessary condition for a neutral inviscid oscillation is that 
A E 0. Lees & Lin (1946) by a mathematical proof show that this condition is 
both necessary and sufficient. The value of the propagation velocity for which the 
condition A = 0 .is satisfied is denoted by c,. We are thus concerned with con- 
structing the solution to equation (19) for G = Qr with the boundary conditions 

G ( 0 )  = 0, G ( ~ o )  = -(1 -M2,(1 -c~)'}&/.. 

The curves in figures 2 and 3 are for insulated flat-plate boundary layers with 
= 1.4. 
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Consider first the region about the critical point where the leading terms of the 

The slope of G a t  the critical point is always - 1. However, the curvature at this 
point is an undetermined constant. For a given a only one value of this constant 
will yield an integral curve that satisfies the outer boundary condition (figure 2 ) .  
Once this value of the constant is determined for a given a, the integration can 
proceed inward from the critical layer toward the wall. For c = c,, the value of 
a for which the wall boundary condition G(0) = 0 is satisfied will be denoted by a,. 
The integral curve for a, approaches the wall boundary condition from above or 
below according to whether G’(0) = 1 -(Wec,2/T,) is positive or negative, 
respectively. Some representative slopes near the wall are shown in figure 2.  
For Me = 0, the slope at  the wall is + 1 ; for infinite Mach number, the slope would 
be - 4  for Prandtl number 1. The slope G’(0) is zero for a Mach number slightly 

solution (26) are G = -(y-yc)+const. (y-yc)2+ .... 

above 2.2. Since n/nw = exp [s,” a:Gdy] ,  positive areas under the G curve 

represent increases in pressure fluctuation amplitude relative to the wall value, 
while negative areas represent decreases. 

The non-linear term in equation (19) is important only when G is very large. 
However, it is always important near the outer boundary, since the outer 
boundary condition is determined by a balance of the [l - M;(w - c ) ~ / T ]  and 
[ - a2G2] terms of equation (19). 

The uniqueness of a, has been conclusively demonstrated by Lees & Lin (1946) 
when the boundary layer is entirely subsonic relative to the disturbance. No such 
proof is yet available when the wall is supersonic relative to the disturbance. 

For a neutral disturbance with aRe finite, the quantity A generally takes on a 
non-zero value ( A  2 0 for c 5 c,), and G takes on an imaginary part. Also, the 
constant in equation (26) is no longer the curvature but only a parameter, since the 
curvature at the critical point is logarithmically singular for A $: 0. The character 
of the integral curves is shown in figure 3. The curve for G is not very different 
from that for A = 0, except that G,.(O) + 0. The imaginary part Gi is always of the 
same sign as A and also has a non-zero wall value. These non-zero values lead to 
($inv)w + 0,  ( finv)w $: 0,  and (Sin,), $: 0, and the action of viscosity is required 
to cancel these inviscid contributions and satisfy the wall boundary conditions. 

Once the distribution of G(y)  across the profile is obtained the distribution of 
the inviscid disturbance amplitudes are calculated as follows : 

(30) 
This integration is carried out starting from the critical layer, since the imaginary 
parts of m and Gi have zero value outward from the critical layer. The real and 
imaginary parts of n are 

np = exp (s,”, a2GP dy )  cos (11 a2Gi dy)  f3laf 

and 

36-2 
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By equation (30), the pressure fluctuation amplitudes are referred to their value 
at  the critical layer; that is nc = rrrC = 1 is the reference pressure fluctuation 
amplitude. From the inviscid equations (11) to (14), the other fluctuation 
amplitudes can be related to the pressure fluctuation amplitude. Following 
Dunn & Lin (1955), the inviscid functions are denoted by the capital letters 

TGT = i TT' CD, F ,  and 0, where 
CD = i -  

yM,2aZ(w - c )  yM,"(w -c)'  

For further discussion of amplitude distributions, the reader is referred to Q 3.4. 

3.2. Viscous solutions 
No previous investigator has attempted to obtain analytical solutions of the full 
viscous equations, even at low Mach numbers. The present analysis is no excep- 
tion. In  order to bring out the differences between the present analysis and earlier 
studies, the assumptions and consequences of the Lees-Lin (1946) and Dunn-Lin 
(1955) analyses will first be reviewed briefly. The usual procedure in obtaining 
viscous solutions has been to solve a set of reduced equations that retain terms up 
to a certain order, either near the critical point or else near the surface. These sets 
of reduced equations are the same only if the surface is very close to the critical 
point. In  fact this limitation applies to the Lees-Lin (1946) theory, in which a 
solution is obtained by convergent series expansion about the critical point and is 
then utilized to satisfy the surface boundary conditions. On the other hand the 
Dunn-Lin analysis assumes apriori that the wall is far from the critical layer and 
obtains a set of reduced equations valid near the wall but not a t  the critical layer. 

The reduced equations of Lees & Lin (1946) and of Dunn & Lin (1955) are 
obtained by order-of-magnitude analyses. For the Lees-Lin case the ordering of 
terms is as follows: 

Q,QJ N 1, d/dy - I/€, (w-c)  W e ,  f - 1, Q - e f ,  e - f ,  - 6 ~ .  (35) 

It must be remembered that the ordering relation d/dy N l/s is valid only in a 
restricted region. The leading terms of the disturbance equations under assump- 
tions (35) form the following differential equations. These equations will be 
referred to as the Lees-Lin equations 

and 

f "' - iaRew-l(w - c)f = 0, 

Q' + i f  = 0, 

8" -iaReo-w-l(w - c )  8 = aRecrv-lT'Q, 

E - (aRe)-fr. 

Equations (36) to (38) are a sixth-order system of ordinary differential equations 
dependent only on the parameter aRe. It is to be noted, however, that the 
continuity and momentum equations (37) and (36) are a closed fourth-order set 
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independent of the energy equation; in fact, it is the same set that is obtained for 
incompressible flow. As will be shown in $3.3, this independence makes possible 
the determination of the stability characteristics from the velocity fluctuation 
boundary conditions alone ; the temperature fluctuations are irrelevant in this case. 

Dunn & Lin (1955) recognized that, for supersonic flows, the propagation 
velocity c may be some substantial portion of the free-stream velocity, and the 
critical point may be relatively far from the wall. Accordingly, they ordered the 
various quantities occurring in the stability equations in the following manner 

0,s‘ N 1, d/dy N I/€, (w-C) N 1, f N 1 4 w t f ,  8 N f ,  ~ @ f .  (40) 

The leading terms of the disturbance equations under the ordering (40) form the 
Dunn-Lin viscous equations : 

f ”’ - iaRev-l(w - c )  f ’ = 0, (41) 
4’ + i f  = i(w -c) BIT, (42) 

8”-iaRem-l(w -c)B = 0, (43) 

and e - (aRe)-&. (44) 

These equations also depend only on the one parameter aRe. The momentum and 
energy equations (41) and (43) are mutually independent while the normal 
velocity fluctuations are related to the longitudinal velocity fluctuations and the 
temperature fluctuations through the continuity equation (42). 

The method of solution of equations, (41) to (43) is given by Dunn (1953). He 
transforms equations (41) and (43) by introducing new variables of the form 
suggested by Tollmien (1947), so that the equations reduce to the form solved by 
Lees & Lin. The details of the transformation and the solutions of the Dunn & Lin 
equations are reviewed in Appendix D of Reshotko (1960) and also in Mack 
(1960). For aRec + 1, it is useful to obtain asymptotic solutions to the viscous 
disturbance equations. These solutions have in fact already been obtained by 
Dunn (1953). However, in most cases aRec is not sufficiently large to warrant the 
use of the asymptotic solutions, so that they are omitted from the present 
discussion. 

As the Mach number of the flow increases, certain terms of the disturbance 
equations that are Mach-number-dependent grow larger than indicated by an 
ordering procedure based solely on free-stream Reynolds number. The normal 
gradient of mean temperature is of order M t ,  and the inviscid amplitude relations 
(33) and (34) show that the ‘inviscid’ temperature fluctuations normalized with 
the free-stream temperature are also of order M i ,  compared with the normalized 
longitudinal velocity fluctuations. The ‘viscous ’ temperature fluctuations must 
therefore also be of order M,2. At the same time the whole mean temperature level 
in the boundary layer grows as Nt,  and the free-stream static temperature level 
is no longer relevant. Temperature fluctuations and mean quantities that are 
temperature dependent should be normalized by some representative temperature 
Tref N MiT,. As shown by Dunn (1953), the new normalizations and new 
definitions of Mach number and Reynolds number are 

(45) 
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Even with the new temperature normalization, normal gradients of mean 
temperature-dependent quantities are of magnitude M:ef times the normal mean 
velocity gradient. In  general, Mref = O ( l ) ,  SO that the retention of Mref in the 
ordering relations that follow is mainly for the purpose of identifying the terms 
depending on mean temperature gradient and the dissipation terms. The 
ordering relations used in the present analysis are as follows: 

Q, Q’ 1 (except T’,p’ M:ef), d/dy l / C ,  

f N 1 ,  O N f ,  # w i g ,  7 r N . q )  (46) 

so that the orders of the terms in the disturbance equations may be grouped as 
follows : 

1, E, M:efE, M:efC2 (aRe,f) dependence only; 

C2, E3,  MiefE3, F4, M:erE4 a and (aRe,,f) dependence. 

Here 

Terms in the disturbance equations arising from the fluctuating viscous stresses, 
heat-flux gradients, and viscous dissipation that are regarded of order B in the 
Lees-Lin and Dunn-Lin analyses are actually of order C. For a linear viscosity- 
temperature relation, E - M ~ B ,  and a t  high supersonic and hypersonic Mach 
numbers, the above-mentioned terms are likely to be comparable in magnitude 
to the terms of unit order. 

Referring to the grouping of ordered terms, no major difficulties arise when 
terms of order 1, E ,  M:e,C, and M:efEz are considered, since these depend only on 
the single parameter (aRe,,f). But if terms of order M:efE2 are to be included in the 
viscous equations, then to be consistent one should also include the pressure- 
fluctuation terms (of order ?) in the continuity and energy equations, and also 
the terms of order 2 with coefficient 012 arising from the streamwise gradients of 
fluctuating quantities. In  the present analysis only terms of order 1, C, and M:e,C 
are retained in order to investigate the first-order effects of viscous dissipation and 
large mean normal temperature gradients, hitherto neglected. 

Momentum : 

The viscous disturbance equations here considered are as follows: 

Continuity : 
T‘ i(w -c) 
T T 

#’+if --$b--- e = o .  
Energy : 

4, (49) 
iaRec(w -c) mReT’ O=- O”+--T’O‘+S(y- 2 dP 1)cM:w’f’- 

P d T  V V 

I n  contrast to the Lees-Lin and Dunn-Lin viscous equations, the current set 
[equations (47) to (49)l have no independence properties, and the three equations 
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must be solved simultaneously. The linearly independent solutions to equations 
(47) to (49) are distinguished by their behaviour in the outer flow where mean flow 
quantities have reached their external values. In  the outer flow, equations (47) 
to (49) become 

f”’ - iaRe( I - c) f ’  = 0, 

and 

One set of solutions to equations (50) to ( 5 2 )  is of the form 

(53)  $’ N exp I] +_ (iaRe(1- c)}t y ] ,  8 = 0, 

while another set is of the form 

8 exp [ i- ,/{iaReu( 1 -c)>* y], f = 0. (541 

A third set corresponding to f‘ = 0 is replaced by the inviscid solution and is 
therefore not considered here. In  equations (53) and (54) the solutions with the 
positive exponents are rejected immediately, since they grow exponentially and 
cannot possibly satisfy the outer boundary condition [equation ( lo)] .  The 
remaining two sets of solutions corresponding to the negative exponents must 
now be found. Since equations (47) to (49) are rather tightly coupled, it is likely 
that their simultaneous solution will have to be obtainednumerically. Themethod 
is somewhat similar to that used to obtain the inviscid solution. 

Consider the solution corresponding to the negative exponent in equation (54). 
Let 

In  terms of H ,  J ,  and K ,  equations (47) to (49) become 

H = e’le, J $18, K =fie.  (55) 

iaReo(w -c) c~aReT’ +- J - H 2 ,  H‘ = - - - T ’ H - Z ( ~ - ~ ) ~ T M , ~ ~ ’ ( K ’ + H K ) +  2 dP 
lu dT V 

. i (w-c )  T’ 
T T  

J’ = -aK+- + - J - H J ,  

(56) 

(57) 

- 
V 

- H(3K” + 3K’H + 3H’K + H2K) - 3K‘H’ - H”K,  (88) 
with ‘outer’ conditions 

Ho = -{iaReu(l -c)}&, Jo = -(i(l -c)/aRecr}*, KO = 0. (59) 

The equations for the set corresponding to the negative exponent in equa- 
tion (53) are obtained in a similar manner. With 

L $If7 M =j’r, N = elf, (60) 
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equations (47) to (49) become 
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i (w-c)  T’ L’ =-i+------ N + - L - L M ,  
T T 

MI’= ---T‘(M‘+M2)---  2 dP 1 dP w’[Nf’+(2N’+NM)M +NM’] 
P dT P dT 

iaRea(w - c )  
N” = - !!* T‘(N‘ + N M )  - 2(y - 1 )  aMzw’M + -iv 

P dT V 
aaRe +- T‘L - (2N’+ N M )  M -NM‘, 

V (63) 

and the outer conditions are 

Lo = {i/aRe( 1 - c)}*, Mo = - {iaRe( 1 - c)}*, No = 0. ( 6 4 )  

The ‘ H J K ’  and ‘ L M N ’  systems of equations are separated into their com- 
ponent real and imaginary equations and are then integrated from the outer edge 
of the boundary layer to the wall for two main reasons: ( 1 )  the outer conditions 
are known; (2) the outer region behaves as a saddle point in the sense that integral 
curves other than those satisfying the outer condition diverge from the outer 
condition. t 

3.3. Eigenvahe problem 

Having indicated the methods of obtaining the various solutions of the distur- 
bance equations, the solutions must be combined to satisfy the boundary condi- 
tions. Note that the outer boundary conditions for subsonic disturbances 
[equation ( l o ) ]  are inherently satisfied by choosing the negative exponents in 
equations (21 ) ,  (53), and (54).$ The three boundary conditions a t  the wall 
remain to be satisfied. They are fw = q5w = Ow = 0. 

Following the pattern of Dunn & Lin (1955), the inviscid functions in this 
section will be capitalized, while the functions corresponding to the L M N  
solution will be given the subscript 3, and those corresponding to the H J K  
system the subscript 5. 

The satisfaction of the boundary conditions leads to the following determi- 
nantal relation 

@w 4 3 w  $55w 

F w  f 3 w  f 5 w  = 0, : @w 03, 85, i 
which, when expanded, yields the secular equation 

---+- @w 4 3 w  @w($5w f3w e5w + @w 83, f 5 w  63w __ $5w 

43w f5w) F w f 3 w  e5w f 3 w  e5w * 

- 
Fw f 3 w  F w  05, 

t This behaviour is shown in Appendix E of Reshotko (1960). 
$ The process of patching two independent inviscid solutions at the outer boundary by 

the condition 4’ + 01( 1 - M:( 1 - c)”& q5 = 0, which is required in the Lees-Lin and Dunn-Lin 
procedures, is here unnecessary. 
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Note that in the Lees-Lin, Dunn-Lin, and present formulations the inviscid 
solutions depend only on the parameter a while the viscous solutions depend only 
on aRe. With the aid of the following identity, derived from the inviscid equa- 
tions (12)  and (la), 

(67) - @w = ( y - l )M,2c+i (y - l )M,2c  
FW 

equation (66) can be written 

The Lees-Lin and Dunn-Lin secular equations are also quite simply obtained. 
For the Lees-Lin viscous solutions, $, = f 5  = 0. Since B,, is generally not zero, 
equation (68) becomes 

This result confirms the irrelevance of the thermal boundary condition in the 
Lees-Lin case. 

(69) @w/Fw = $3w/f3w. 

For the Dunn-Lin solution, &J3 = f ,  = 0, so that the secular equation is 

45w 

@t" f 3 w  65, 

Fw 

5h + (y  - 1) a," c - 

(70) - 

For some unstated reason, Dunn & Lin (1955) apparently omitted the second 
term on the right side of equation (67) so that the denominator of equation (70) 
in their formation is simply unity. This omission is here corrected. 

In  the terminology of the present method ( 9  3.2), equation (68) may be written 

= 9, 
where 

Again, from the inviscid equations (11)  to (14) ,  

%-___- i 
Fw {(whlc) - P/GW)l 

- 

so that relation (68) may finally be written 

(73) 

where 
(74) 

(75) 
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In  equation (74), Gw depends on a alone, while the right side depends on uRe 
alone. The values of a and aRe for which equation (74) is satisfied are the desired 
characteristic values. Some detailed examples of this procedure are given in 5 4. 

3.4. Amplitude distributions 
Once the characteristic values of a and Re are determined, the distributions of the 
amplitudes of the disturbance quantities across the boundary layer are calculated 
by obtaining the amplitude distributions for the inviscid solutions, the L M N  
solutions (solutions 3) and the H J K  solutions (solutions 5) and combining them in 
the manner satisfying the boundary conditions. The discussion in this section 
concerns the functions rr, 4, f, and 0. The normal velocity fluctuations are given 
by a$, while the density fluctuation amplitude can be obtained by using the 
equation of state. 

Before proceeding, it must be recalled that, in splitting the solutions into 
inviscid and viscous types, a singularity was artificially introduced into the 
inviscid equations at the critical point by the complete elimination of viscous 
and heat-conduction effects from these equations ($3.1) .  Accordingly, before 
using the inviscid solutions in composing the amplitude distributions, they must 
be corrected for the effects of viscosity and thermal conductivity in the neigh- 
bourhood of the critical layer. For incompressible flow, such corrections were 
first obtained by Tollmien (1947) and Schlichting (1935). 

Here we seek the leading viscous corrections to the inviscid functions in the 
region about the critical point. To be more specific, the corrected function is 
given by 

qcopl = qinv - (singular term) + (viscous replacement term), 

where the viscous replacement function is obtained by solving the disturbance 
equation containing only the leading viscous terms in the neighbourhood of the 
critical point. This replacement function must satisfy the condition that 'far ' 
away from the critical layer it approaches asymptotically the singular portion of 
the original uncorrected inviscid function. 

The behaviour of the uncorrected inviscid functions in the neighbourhood of 
the critical layer is obtained from a series expansion of the inviscid solution 
around the critical point. The series expansion for the pressure fluctuation 
amplitude has already been obtained [equations (26) to (29)I. The other inviscid 
amplitudes are related to 7~ and 7~' through equations (32) to (34). The results for 
@, P, and 0 are respectively as follows. 

Normal velocity Jluctuation amplitude function CD 
For (y -Yc) > 0, 
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The quantity A is the derivative of the density-vorticity product a t  the critical 
point as defined by equation (28). When A = 0, there are no discontinuities in a. 
For A + 0, the values of a, and are continuous, but QV is discontinuous in 
slope at the critical point, while has a discontinuity in curvature. 

Longitudinal velocity fluctuation amplitude function F 

i T, + ... An+ .... (79) 

There are no discontinuities in F for A = 0. However, for A + 0, & has a 
logarithmic infinity while there is a jump discontinuity in &. 

Temperature JEuctuation amplitude function 0 

For (Y -Yc) > 0, 

To be noted immediately is the l / (y  - y,) discontinuity in 0, even for A = 0. This 
irregularity in the distribution of temperature-fluctuation amplitude is caused 
simply by the assumed absence of thermal conduction. For A + 0, there is an 
additional logarithmic discontinuity in 0, and a jump discontinuity in Oi. The 
inviscid disturbance vorticity given by (F'+ iaW) has a discontinuity similar to 
that of the temperature fluctuations. 

The corrections for viscosity and conductivity are introduced logically using 
the method of convergent series expansion about the critical point as developed 
by Lees & Lin (1946) and Cheng (1953). In  the present case this expansion is 
carried out in the Tollmien variable. Furthermore, the present development (see 
Reshotko 1960) reduces the correction equations to the forms solved by 
Schlichting (1935), so that the universal functions first calculated by Schichting 
(1 935) and later improved by Holstein (1 950) could be used here. Consider, for 
example, the corrections to 0,. The function (O,),,,, may be expressed as 

(@,),,, = 0, -(singular terms) + (viscous replacement terms), (82) 

The singular terms from equation (81) are 
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The replacement terms (see Appendix G, Reshotko 1960) are 
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where 
~~~~ ~ 

5 &a c'l(5) &a 
- 8.0 2.0795 - 0.1250 - 3.1429 
- 7.5 2.0149 -0.1333 - 3.1432 
- 7.0 1.9460 - 0.1428 - 3.1435 
- 6.5 1.8719 - 0.1538 - 3.1440 
- 6.0 1.7919 -0.1668 - 3.1444 
- 5.5 1.7052 -0.1801 - 3.1445 

- 5.0 1.6107 -0.1936 - 3.1447 
- 4.5 1.5110 - 0.2105 - 3.1479 
- 4.0 1.3990 - 0.2419 - 3.1592 
- 3.5 1.2633 - 0.3082 - 3.1839 
- 3.0 1.0817 - 0.4281 - 3.2192 

- 2.5 0.8268 - 0.5969 - 3,2424 
- 2.0 0.4845 - 0.7657 - 3.2047 
- 1.5 0.0760 - 0.8454 - 3.0433 
- 1.0 - 0.3309 - 0.7475 - 2.7067 
- 0.5 - 0.6366 - 0.4434 - 2.1944 

0 - 0.7506 0 - 1.5708 

0.5 - 0.6366 0.4434 - 0.9472 
1.0 - 0.3309 0,7475 - 0.4349 
1-5 0.0760 0.8454 - 0.0983 
2.0 0.4845 0.7657 0.0631 
2.5 0.8268 0.5969 0*1008 

3.0 1.0817 0.4281 0.0776 
3.5 1.2633 0.3082 0.0423 
4.0 1.3990 0.2419 0.0176 
4.5 1-5110 0.2105 0.0063 
5.0 1.6107 0.1936 0.0031 

5.5 1.7052 0.1801 0.0029 
6.0 1.7919 0,1668 0.0028 
6.5 1.8719 0.1538 0.0024 
7.0 1.9460 0-1428 0.0019 
7.5 2.0149 0.1333 0.0016 

8.0 2.0795 0.1250 0.0013 

TABLE 1. Viscous correction functions (from Holstein 1950). 

The Tollmien variable for the energy equation is defined by 

and the functions 6"(co) and &'(c0) are the functions calculated and presented by 
Holstein (1950) and reproduced here (table 1). Combining equations (82), (83) 
and (84), we have 
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The thickness of the viscous conductive region is approximately -4 < CO < 4.
Accordingly, the braced term in equation (87) becomes very small for 1 Q( > 4, so
that outside the region (O,),,, x 0,.

Following the same principle, the corrected forms for Oi, Fr:, and Fi are:
For (Y -ye) < 0,

For (Y -Y,) > 0,

For (Y -ye) < 0,

For (Y -ye)  > 0,

where

and

The preceding corrections are the important ones. The largest correction is to the
function 0, and must be made whether or not A vanishes. All the other corrections
are directly proportional to the value of A, which is usually small. Even smaller
are the corrections to a,., which is continuous in value but has an infinite slope at
the critical point, and the corrections to nr where the irregularity does not appear
until the third derivative. The corrections to @ and ~7 are not obtained here. For
incompressible flow, temperature fluctuations are irrelevant and all the cor-
rections are likely to be small.

The amplitudes of the viscious  solutions are obtained as follows:

Similarly,

0, = exp(/rHd2/)  = exp(/y.L$dy)  (cos(/:&dy)  +6(sin/:HicIy)), (96)

$5 = Jo,, (97)
f5 = KB,. (98)

Since all the solutions are eigenfunctions and also satisfy the outer boundary
conditions, the proper linear combination is determined by satisfying two of the
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boundary conditions at  the wall. Except for an arbitrary scaling factor, the 
resulting expressions for the amplitude distributions can be written 

where 

and 

4. Examples 
To illustrate the present methods and to help estimate their validity, several 

numerical examples were obtained for insulated flat-plate boundary layers. The 
particular mean flow profiles used in the examples are those computed by Mack 
(1958) using real-gas fluid properties. Mack’s tables are particularly suited for 
stability calculations in that most of the derivatives of the profile functions 
required for the stability analysis are presented. The variable 7 usedin this section 
is that defined by Mack, namely, 7 = y*($/v,*z*)*, and is directly proportional 
to the physical distance normal to the wall. The values of a, and Re, are made 
dimensionless with q,, where 7, is a constant whose value varies only slightly with 
Mach number. For 0 < Me < 5 ,  0.641 < 7, < 0.664 (Mack 1958). 

The integrations of the inviscid and viscous equations required for the examples 
were performed numerically on the Datatron 205 of the Caltech Computing Center 
using a Runge-Kutta integration method. 

4.1. Neutral inviscid oscillations at aRe + co 
The necessary and sufficient condition for the existence of 
inviscid oscillation (aRe --f co) is that (Lees & Lin 1946) 

a neutral purely 

A EE (2 --- 2) = O  for c > [l-(l/Me)]. 

The value of the propagation velocity c for which this condition is satisfied is 
denoted c,, and depends on the particular profile being studied. In  addition to the 
expected sensitivity to Mach number and surface-temperature level, it is also 
quite sensitive to the Prandtl number and viscosity-temperature relationship, as 
indicated by the calculations of van Driest (1952). Figure 4 shows the variation 
of c, with Mach number at different surface-temperature levels. Also shown on 
figure 4 is the curve c = [l - (l/Me)]. The disturbance propagation velocity for 
supersonic and hypersonic boundary layers is a very substantial portion of the 
free-stream velocity, and the critical layer (where w = c )  cannot be thought of as 
being close to the wall. 

For the mean boundary-layer profiles of Mack (1958), the wave numbers 
corresponding to A = 0, c = c, were obtained for Mach numbers between 1.3 and 
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5.6 and are shown in figure 5. The value of a,* increases in the subsonic range and 
(after a dip near Me = 1.6) reaches a peak a t  about Mach number 5 and then 
decreases with further rise in Mach number.The approximate behaviour of aSe 
for very large Mach number was obtained for pp = const., Prandtl number 1 by 
integrating equation (25) under the assumption that He 1. The result shows 

- .  
I I  I I I I I I 

0 2 4 6 8 1 0 1 2 1 4  
Mach number, Me 

FIGURE 4. Propagation velocity of neutral inviscid disturbances for flat-plate boundary 
layers. , pp = const., cr = 1; 0, real gas profiles (Mack 1958), To = 100' F. 
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& + 004 
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Mach number, M ,  

FIGURE 5 .  Wave-number of neutral inviscid oscillation. 0, Calculated points-real 
gm profiles (Mack 1958), To = 100" F; asymptotic variation, pp = const., u = 1 ,  

= 1.97/Mi. 
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that for very large Mach number 1fMf-a trend that seems to be consistent 
with the calculated points in figure 5. It might be expected that the wave-numbers 
obtained for neutral inviscid disturbances (aRe -+ co) at different Mach numbers 
would be somewhat indicative of the variation of the level of wave-number with 
Mach number for finite Reynolds numbers. 

The variation of the function G(y) = n'/a2z is shown in figure 6. In each case, 
the largest value of rj for which G = 0 is the critical point. These curves have the 
general behaviour described in 0 3.1. The integral under the curves is proportional 
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- 
number) 

Y 
FIGURE 6. Distribution of G = d/aZr for neutral inviscid disturbance. 

to the logarithm of the pressure fluctuation amplitude. Thus, if the net area, under 
the G curve is positive, the pressure fluctuation amplitude is higher than the wall 
value; if the net area is negative, the pressure fluctuation level is below its wall 
value. 

For each of the curves in figure 6, the pressure fluctuation amplitude at the 

critical point is calculated by the formula nC/nw = exp a2 Gdq . The results 

are shown in figure 7. For Mach numbers up to about 3, the pressure fluctuation 
level a t  the critical point is about the same as that at the wall, and is in fact quite 
constant in the region between the wall and the critical point. Above Mach 3, 
however, the pressure fluctuation level at the critical point drops quite sharply, 
and a t  Mach number 5.6 it  is of the order of 6 yo of the wall pressure-fluctuation 
level. This sharp drop occurs when the wall is supersonic with respect to the wave 
and is attributed to the rapid increase with Mach number in the amplitude of 
normal velocity fluctuations between the wall and the critical point. From normal 
momentum considerations, this large velocity fluctuation must be counter- 

( s,"' 1 
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balanced by a large gradient in pressure fluctuation amplitude. Some further 
discussion of this point is given in 8 5. 

Mach number, Me 

FIGURE 7. Pressure fluctuation amplitude at  critical point, neutral inviscid oscillation : 
7rc/nm, ratio of critical point to wall pressure-fluctuation amplitudes. 0 ,  Calculated 
points-real gas profiles (Mack 1958), To = 100' F; asymptotic variation, pp = const., 
u = 1. 

4.2. Neutral stability characteristics of insulated supersonic boundary layers 

Using the insulated boundary-layer profiles of Mack (1958), neutral stability 
characteristics were calculated a t  Mach numbers of 2.2 and 5.6 to compare with 
the experimental findings of Laufer & Vrebalovich (1958, 1960) and with the 
Mach number 5.8 experiment of Demetriades (1958, 1960) respectively. 

4.2.1. Mach number 2.2. At Mach number 2.2 the inviscid solutions for 
different values of c have imaginary parts that are almost completely independent 
of a and whose level increases monotonically with c. The neutral stability 
diagram is constructed as follows. At c = c,, there are two solutions (see figure 8). 
The solution for which Re ($ - 1) = Im( $ - 1) = 0 represents the neutral inviscid 
oscillation, while that for Re($ - 1) + 0 is a point on the lower branch. For 
c > c, (e.g. el, c2, etc.) there are two solutions-one upper branch and one lower 
branch-until for c = c3, the two solutions merge into one. For c > c, (e.g. c4) 
there are no solutions, so that ca is the maximum value of c for a neutral distur- 
bance. The remainder of the lower branch is composed of the single solutions for 
[l - (l/Me)] < c < c,. The locus of all of these solutions is the familiar neutral- 
stability diagram. 

37 Fluid Mech. 12 
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The presently calculated neutral-stability diagram for Mach number 2.2 is 
shown in figure 9, together with the experimental points of Laufer & Vrebalovich 
(1958, 1960). There is good agreement between theory and experiment on the 
upper branch. On the lower branch, however, the experimental values of a, Re, 
are almost twice the theoretical values. The major reason for this difference is 
probably that S is too 1arge-f and that the higher-order terms omitted in formu- 
lating the viscous equations become important. Also shown in figure 9 as a 
dashed line is the neutral-stability loop calculated using the Lees-Lin viscous 
solutions. The upper branch of this loop is only slightly below that of the present 

Im <$- 11 

c3- c-. 

c-cc,, aRe-rn cz 

c* 

c5 

I 

theory, while the results of the two theories on the lower branch are almost 
coincident. Although not shown on the figure, the upper branch results of the 
present theory agree with those using the Dunn-Lin viscous solution (Mack 1960). 
On the lower branch: however, the Dunn-Lin results give the lowest values of aRe. 

These results relative to the Lees-Lin theory may be explained qualitatively as 
follows. The improvement introduced in the Dunn-Lin theory is to take proper 
account of the effect of compressibility on the energy fed into the disturbance 
flow by the action of viscosity at the wall. As will be shown in the next section, the 
magnitude of this compressibility effect is related to a parameter (Mzc2)/T,. This 
effect is always destabilizing, so that the Dunn-Lin neutral curve will always tend 
to be outside the Lees-Lin loop (figure 10). In  the present theory, however, the 
effects of including the additional dissipation, shear, and conduction terms become 
noticeable on the lower branch (where aRe is small) and tend to push the lower- 
branch curve back toward the Lees-Lin curve, or even beyond it. 

A set of disturbance amplitude distributions across the boundary layer was 
obtained for the upper-branch neutral point a t  Re, = 535 and compared with a 

t For the point on the lower branch where a, = 0.030 and Re, = 89, the value of 2 is 0.54. 
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0.8 

07 

0.6 

0 5  

FIGURE 9. Neutral stability characteristics, Me = 2.2.  - , Present theory; - -, Lees- 
Lin theory (Mack). Laufer-Vrebalovich data: 0, upper branch; 0, lower branch. 

FIGURE 10. Schematic comparison a t  A!,!& = 2.2 of neutral stability diagrams from 
Lees-Lin, Dunn-Lin, and present theories. 

37-2 
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set of experimental distributions obtained by Laufer & Vrebalovich (1958, 1960) 
for the upper neutral point at  Re, = 400. The calculated disturbance amplitudes 
are scaled so as to match the experimental mass-flow fluctuation at  6. From 
figure 11, the agreement outward from the critical layer is seen to be quite good, 
while in the neighbourhood of the critical layer the agreement is perhaps not 

0 0 2  0 4  0 6  0 8  1.0 1.2 1.4 1.6 

Y P  
FIGURE 11. Amplitude distributions for neutral oscillation, Me = 2.2. __ , Present 
theory, Reo = 535, c = 0.616. Laufer-Vrebalovich data, Re0 = 400, c = 0.62: --o--, f ;  
--A--, 0. 

0 0 2  0 4  0 6  0 8  1.0 1.2 1.4 1.6 

Y P  
FIGURE 12. Mass-flow and total-temperature distributions for neutral oscillation, Me = 2.2. 
-, Present theory, Reo = 535, c = 0.616. Laufer-Vrebalovich data, Reo = 400, 
c = 0.62: --O--, mass-flow fluctuations; --A--, total-temperature fluctuations. 

quite as good. Laufer (1959) indicates that in locally subsonic and transonic flows 
there is some doubt involved in deducing pressure, velocity, and temperature 
fluctuation amplitudes from the mean-square hot-wire output. At  local Mach 
numbers above 1-2, the calibration of hot wires is well standarized (Laufer & 
McClellan 1955), but such is not the case a t  transonic speeds. In  addition, Laufer 
& Vrebalovich had to assume the values of pressure fluctuation amplitude in 
order to deduce velocity and temperature fluctuation amplitudes. The question 
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of assumed pressure-fluctuation level is removed when the mass-flow and total- 
temperature fluctuations from theory and experiment are compared. This com- 
parison is shown in figure 12, and the agreement here is quite good. 

4.2.2. Mach number 5.6. The situation at  Mach number 5-6 is quite different 
from that described for Mach number 2.2. The dominant factor here is the 
behaviour of the imaginary part of the inviscid solution - wLGiwlc, which is pro- 
portional to (w'/T); 17rc/7rw12. At Me = 5.6,  this quantity is also slightly dependent 
on a, but in figure 13 it  will be considered as dependent only on c and independent 
of a. Because at  Me = 5.6, 17rc/nw12 < 1 (figure 7), the quantity - wLGiw/c is very 
small in magnitude, so small that the viscous solutions to the scale of the sketch 

I -' 

Viscous 
-% I solutions 

finite 

Re, 

FIGURE 13. Schematic construction of neutral stability diagram at  Me = 8.6. 

are just vertical lines. The value of this quantity is no longer monotonic in c. 
Rather it increases with c to a maximum at some value of c > c, and then decreases 
toward zero as c + 1. 

The construction of the neutral stability diagram is as follows. For c = cs, there 
are two solutions, one of which is that of the neutral inviscid oscillation. As 
c increases toward unity, two solutions are continually obtained. There is no 
longer the phenomenon of a maximum value of c above which no neutral oscilla- 
tions can occur. This behaviour occurs because the maximum value of - whGiu/c 
from the inviscid solutions (occurring for c = cp  in figure 13) is much less than the 
maximum value of Im($ - 1) at the pertinent value of c. For [l - ( l/Me)] < c < c, 
there is only one intersection. The solutions for neutral oscillations form two loops 
in figure 13. 

The two loops obtained at Mach number 5.6 are shown in figure 14. The upper 
right loop has a minimum Reynolds number based on momentum thickness of 
slightly over 105. This value of Re, corresponds to a length Reynolds number 
greater than 1010, and it is not likely that this loop has much practical significance. 
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The data obtained by Demetriades (1958,1960) at Mach number 5.8 are identified 
with the curve in the lower left corner of figure 14. The portions of this curve 
drawn in a full unbroken line have about the same shape as Demetriades's data, 
but are about an order of magnitude lower in Reynolds number than the experi- 
mental data. Nevertheless, as shown in figure 14, a selected point on the curve is 
about an order of magnitude higher in Reynolds number than obtained using the 
Lees-Lin and Dunn-Lin theories. This behaviour shows the importance of the 
new dissipation and shear terms presently included. The value of G for this 
test point is 2-0, showing that there is no reason to expect good quantitative 
agreement between theory and experiment. 

0.10 
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FIGURE 14. Neutral stability characteristics, Me = 5-6. For point at T~ = 17.4, 
c = 0.98099: 0, present calculations; A, Dunn-Lin viscous solution; 0 ,  Lees-Lin viscous 
solution. 

The dashed portion of the lower loop is that portion where the propagation 
velocity c very closely approaches unity. It is suspected that the calculation 
procedure is inadequate for this portion of the curve, since the splitting of the 
solutions into inviscid and viscous types is of questionable validity for c -+ 1. It 
can be shown that a necessary condition for splitting the solutions into inviscid 
and viscous types is that [aRe( 1 - c ) ]  > a2. 

4.2.3. Discussion. From the results obtained thus far, it is of some interest to 
compare the neutral stability behaviour of insulated boundary layers over a wide 
range of Mach numbers. Because these comparisons are based on only a few 
calculated stability diagrams, some of which are not well understood, parts of the 
discussion that follows must be considered speculative. 

For Mach numbers of 2.2 and below, only a single stability loop is obtained 
both theoretically and experimentally (Laufer & Vrebalovich 1958, 1960; 
Schubauer & Skramstad 1948). At Mach number 5-6, two loops are obtained, 
neither of which is related to the one obtained at Me < 2.2. We may perhaps 
describe the stability behaviour from Mach number zero to about Machnumber 2.5 
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as ‘almost incompressible’; t that above about Mach number 5 as ‘hypersonic’; 
this leaves a very interesting and little understood transition region from one 
type of stability behaviour to the other between Mach numbers of about 2.5 and 5. 
Some numerical results were obtained for the ‘transitional’ case Me = 3.2, but 
these results are not well enough understood to be discussed here. 

The variation of minimum critical Reynolds number with Mach number is also 
quite interesting. The calculated value of crit decreases from a value of 
about 150 at  Mach number zero (Lees 1947), through a value of about 45 at Mach 
number 2.2, to some value below 10 at Mach number 3.2. All these values are 
obtained from the conventional ‘ aImost incompressible ’ loop. At Mach number 
5-6, the calculated value of is about 45 (figure 8) and comes from the 
new lower loop. These results indicate that the minimum critical Reynolds 
number decreases from its Mach-number-zero value, reaches a minimum some- 
where around Mach number 3 and then increases again. 

One may speculate about the variation of minimum critical Reynolds number at  
hypersonic speeds. For the lowest loop, the calculated values of a,Re, are about 
the same for both Me = 3.2 and Me = 5.6. If Re, remains fairly constant hyper- 
sonically and a g  follows the asymptotic trend, a g  - (l/z) (figure 2 ) ,  then 

would increase as M,“ [and (ReJmincrit as M:]. We can infer that 
instability of the laminar boundary layer would move downstream very rapidly 
with increase in local Mach number. There is some experimental evidence sup- 
porting this latter speculation, namely, that Bogdonoff (1959) reports that he 
has never observed transition to occur at  a local Mach number of 11 even at  length 
Reynolds numbers as high as 107. 

5. Qualitative description of compressible-boundary-layer stability 
The examples of the previous section ($4) show that the theoretical and 

experimental neutral stability characteristics and amplitude distributions are in 
at  least qualitative agreement. For a better understanding of the stability 
phenomenon it is useful to discuss the balance of disturbance energy, 

Net ‘production’ of 
disturbance energy 

Net energy 

per cycle 

For a neutral disturbance the net energy change per cycle is zero. By ‘production ’ 
in equation (105) is meant the transfer of energy from the mean flow to the 
disturbance flow. The net production term is expressed in terms of the Reynolds 
stress: Net production of 

disturbance energy (106) 
per cycle 

t Laufer & Vrebalovich (1960) have in fact recently correlated the experimental results 
of Schubauer & Skramstad (1948) for incompressible flow and those of Laufer & Vrebalovich 
(1960) a t  M e  = 1.6 and M e  = 2.2. By plotting (/3ve/ut) against Res, where S is the full 
boundary-layer thickness, they obtain a single diagram for all three Mach numbers. The 
amplification factors plotted as (aciS)/ue against (/?vJu;) also correlate for these experiments. 
These observations support the identification of the neutral stability characteristics at 
Mach numbers up to about 2.5 as almost incompressible. 
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where r = -pufwf = -gapRe(f$*).t (107) 

Some knowledge of the behaviour of the Reynolds stress (therefore also the 
velocity fluctuation amplitudes) will prove desirable in understanding the effects 
of compressibility. 

For a real gas, the longitudinal velocity and temperature fluctuations must 
vanish a t  the wall no matter how small the viscosity and thermal conductivity. 
Thus, we must add viscous solutions that take on the wall values - ( fhv)w and 
- (Ohv)w to the inviscid functions already determined (figure 1). An approximate 
form of these viscous solutions is obtained by considering the asymptotic form of 
the viscous equations (41) to (43). In  a thin layer near the wall (w M 0), equations 
(41) to (43) become 

f: + (iaRec/v,) f; = 0, (108) 
$: = - iffl - (ic/T,) 0,, 

0; + (iaRecrc/v,) 0, = 0. 

The desired solutions to equations (108) and (1 10) are those which decay to zero 
far from the wall; they are, respectively, 

where 8, = ( 2vw/caRe)* is representative of the thickness of the layer near the wall 
in which the viscosity effects are important. 

According to the continuity equation (log),  a viscous normal-velocity fluctua- 
tion is induced by f, and 6,. Since $,(co) = 0, by utilizing equations (111) and 
(112) in equation ( log) ,  one obtains 

where x = (7 - 1) M2,c2/T,,. (114) 

But $, = ($v)w + ($inv)w = 0,  so that ($hv)w = - ($,),, and the inviscid solutions 
must now be altered slightly to satisfy the boundary condition at  the wall. 

In  the case of a fictitious inviscid gas, the Reynolds stress for a neutral distur- 
bance must vanish everywhere. But for the real gas ($inv)w + 0, and the Reynolds 
stress associated with the inviscid solutions is [equations (107), (113), and (114)] 

7inv(Sw) = i p w a s w  IVinv)w12 (1 +‘v-’)* (115) 

[Note that rhv(Sw) > 0 and is of order Re-$.] Now, since the Reynolds stress for 
the inviscid solution is constant in any region where the Wronskian of the two 
solutions mr and mi (or $, and $J is continuous (Lees & Lin 1946), this Reynolds 
stress must be constant in the region between the wall and the critical layer, as 
shown by the broken line in figure 15. But r + 0 far from the wall, so the value of 
r given by equation (1 15) must be cancelled by an equal and opposite increment 
in Reynolds stress at the critical layer. This incremental jump in Reynolds stress 

t Of course the ‘mean flow’ is also altered slightly by the action of the Reynolds stress 
(Stuart 1956), but this effect is of order a2Re, where a is here the disturbance amplitude, 
and makes a second-order correction to the disturbance flow. 
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in the neighbourhood of the critical layer is a viscous phenomenon. However, its 
value can be calculated from the inviscid solutions, and viscosity has the effect of 
smoothing the transition from one value to the other. This behaviour is analogous 
to the one-dimensional normal shock wave, which is a viscous conductive 
phenomenon whose gross characteristics can be determined without considering 
viscosity and conductivity, but whose detailed structure can only be determined 
through consideration of the effects of viscosity and thermal conductivity. 

--L 

7 

Ye 
FIGURE 15. Sketch of Reynolds stress distribution for aRe & 1, (G  > cs). 

The magnitude of the jump in Reynolds stress from equations (76) to (79) and 
(107) is 

where 

This function arises continually in hydrodynamic stability problems (Lin 1955) 
and is in fact included in the compressible-boundary-layer tabulations of Mack 
(1958). Along the upper branch c > c,, A < 0, uo(c) > 0 so that the jump in 
Reynolds stress is negative as required. Setting the sum of equations (115) and 
(116) equal to zero and remembering that 8, = (Bv,/aRec)* yields 

This expression is strictly valid only for aRe 1, and its significance is that as the 
Mach number increases, I?! increases [from equation (1 14)] while I T&, I decreases 
(see figure 7). Both of these effects tend to extend the upper neutral boundary to 
larger values of aRe, and are to be interpreted as destabilizing since they enlarge 
the region of amplified disturbances. 

The sharp decrease in I T ~ / T ~ I  shown in figure 7 occurs when the wall is supersonic 
with respect to the wave. This behaviour can be ascertained from an approximate 
analysis of the inviscid equation. Near the wall, q5 z 0, so that n‘ z 0 and 
equation (1  6) may be written 

where 



586 Lester Lees and Eli Reshotko 

Equation (1 19) is just the Prandtl-Glauert equation for a wavy disturbance in a 

steady flow. Through a Dorodnitsyn-Howarth transformation i j  =I$, the 

boundary-layer thickness is normalized and equation (1 19) becomes 

d2n/dp+ (aT,)2 [(Mr&$ - 11 7r = 0. (121) 

At subsonic or slightly supersonic free-stream speeds, (CCT,)~ = O(a2) and the 
increase in pressure amplitude between the plate surface and the critical layer is 
small. But at high supersonic and hypersonic speeds, ( L X T ~ ) ~  is no longer small and 
(Mrel)w > 1, so that the decrease in pressure fluctuation amplitude outward to the 
critical layer is substantial. This phenomenon was not properly accounted for in 
previous theoretical treatments (Lees & Lin 1946; Dunn & Lin 1955) because the 
inviscid solutions were obtained by employing series expansions in powers of a2. 
Since a2 was supposed to be small, it was tacitly assumed that (n,/7r,12 = O(1). 
The fact that 17rc/n,12 < 1 for high Mach number flows has a strong influence on 
the Reynolds stress increment a t  the critical layer [equation (1 IS)] and therefore 
on the energy balance for a neutral disturbance. 

For neutral disturbances at  very large values of aRe, the Reynolds stress has 
the distribution through the boundary layer shown by the solid line in figure 15. 

FIGURE 16. Net conversion of energy from mean flow to disturbance flow. 

The net production of energy may also be sketched (figure 16). The shaded 
area, being the integral under the T ( ~ u / & J )  curve, represents the net energy 
production per cycle. It is this quantity that must be balanced by dissipation for 
a neutral oscillation. 

For aRe only moderately large, the two regions in the boundary layer where 
viscosity is important tend to grow and may even overlap, so that a region of 
constant Reynolds stress may not be observed between the wall and the critical 
layer. As an example of the Reynolds stress distribution for moderately large 
aRe, that corresponding to the amplitude distributions of figures 11 and 12 is 
shown in figure 17. The broken line in figure 17 is the level of the inviscid Reynolds 
stress between the wall and the critical layer. When c < cs, the overlapping of the 
two viscous regions must always occur because the jump in Reynolds stress 
predicted by the inviscid solutions across the critical layer [equation (1 IS)] is 
positive and can never counterbalance the Reynolds stress produced near the wall. 

Even when aRe is not large, the following qualitative effects remain: the 
production of disturbance energy at  the wall increases with Mach number; the 
stabilizing or destabilizing effect a t  the critical layer diminishes in the ratio 
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~ T ~ / T ~ ~ ~ ,  and at  high Mach number may be of negligible importance. Both of 
these tendencies indicate that, as the Mach number increases, the net production 
of disturbance energy also increases, so that the dissipation effects must become 
more important. As indicated by the calculations at  Mach number 5-6, this 
behaviour significantly lowers the range of aRe for neutral disturbances to a level 
such that Prandtl’s splitting of the disturbance flow into inviscid and viscous 
parts is no longer appropriate for a proper quantitative estimation of the stability 
characteristics of a given boundary-layer profile. 

lox 10-10 

I I I I 
0 01 02  0 3  0.4 0 5  0 6  07 08 0 9  1.0 

YlS 
FIGURE 17. Reynolds stress dist,ribution for neutral oscillation, M ,  = 2.2, c = 0.616, 

Reo = 535: - - -, inviscid solution; - , complete solution. 

6. Concluding remarks 
The present study of the stability of the compressible laminar boundary layer 

shows that, although the basic stability mechanisms are the same as for incom- 
pressible flow, the relative importance of the various mechanisms changes con- 
siderably with Mach number. 

1. Instead of being nearly constant across the boundary layer, the amplitude 
of inviscid pressure fluctuations decreases markedly with distance from the plate 
surface at Mach numbers greater than 3. Because of this behaviour the rate of 
absorption (or production) of disturbance energy near the critical layer is greatly 
reduced, as compared with subsonic or slightly supersonic flows. 

2. At the same time the rate of production of disturbance energy near the 
surface caused by the viscous phase-shifts increases with Mach number. 

3. Viscous dissipation becomes extremely important at high Mach number, 
since it must compensate for the effects mentioned in items 1 and 2. This pheno- 
menon is also foreshadowed by the increase in the relative magnitude of the 
temperature fluctuations. Accordingly, terms in the equations of motion in- 
volving gradients of viscosity or conductivity fluctuation, or viscous dissipa- 
tion, which are neglected in the older ana,lyses, must be included at high Mach 
numbers. 

4. For free-stream Mach numbers of 2-2 and below, only a single stability loop 
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in the (a,  Re)-diagram is obtained. Calculated neutral-stability characteristics 
and disturbance-amplitude distributions a t  Me = 2.2 are in good agreement with 
the Laufer-Vrebalovich data. 

5. At Me = 5.6 two distinct stability loops are obtained, but the minimum 
Reynolds number (Re,) for the upper loop is so high ( - 105) that it does not have 
much practical significance. The other loop is qualitatively similar to the experi- 
mental results of Demetriades at  Me = 5.8. However, the calculated Reynolds 
numbers are still an order of magnitude lower than the experimental values, 
although they are in turn an order of magnitude larger than the values obtained 
from the Lees-Lin or Dunn-Lin methods. 

6. At Mach numbers around 3.5, one obtains a transitional stability diagram 
between the ‘almost incompressible’ behaviour for Me 6 2.5 and the hypersonic 
behaviour for Me > 5.0. This regime requires additional theoretical study. 

7. The structure and solutions of the linearized disturbance equations must 
be carefully examined for the case c, + 1. In  addition there is some question 
concerning the uniqueness of the wave-number eigenvalues for a neutral inviscid 
disturbance when the relative velocity between the wave and the plate surface is 
supersonic. 

8. Asymptotic methods utilized in all boundary-layer-stability analyses, based 
on a ‘small’ parameter of the form 6 = (aRe)-3, are no longer adequate at  high 
Mach numbers. In  fact, the procedure of splitting the solutions into ‘viscous) 
(rapidly varying) and inviscid (slowly varying) is no longer justified. It is sug- 
gested that attempts be made to integrate the complete, linearized disturbance 
equations, perhaps by methods similar to those developed in the present study for 
the separate viscous and inviscid solutions. 

9. Some evidence exists that aRe at first decreases with increasing Mach 
number, and then approaches a constant value as viscous dissipation builds up. 
Since the wave-number behaves asymptotically like l/M,2, the minimum critical 
Reynolds number is likely to increase sharply for hypersonic speeds. 

This paper is taken from the thesis submitted by the junior author to The 
California Institute of Technology in partial fulfilment of the requirements for the 
degree of Doctor of Philosophy. For a more detailed development of many of the 
items presented herein, the reader is referred to the thesis itself, Reshotko (1960). 
A short account of some of themain theoretical problems and physicalmechanisms 
of laminar boundary-layer stability at  high Mach numbers is given in Lees & 
Reshotko (1960). 
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Symbols 

the literature on boundary-layer stability. 
The symbols used in the present report are in general those commonly used in 

Positional co-ordinates : 

Longitudinal 
Normal 

Time 

Velocity components : 

Longitudinal 
Normal 

Density 
Pressure 
Temperature 
Viscosity coefficients 

Thermal conductivity 
Wavelength 
Wave -number 
Disturbance propagation 
velocity 

Dimensional 
quantities 

X* 

t* 
Y* 

u* = 5*+u*’ 
v* = .ij*+v*’ 

p* = $*+p*’ 
p* = ?)*+p*’ 

p* = jj*+p*’ 

pz* = jj; +pz*’ 

a* = 2?r/h* 

T* = F*+T*’ 

k* = k*+k*’ 
A* 

c* 

Dimensionless Reference 
quantities quantities 

X (u:x*/u:)* 
Y (v:x*/u:)* 
t (V:x*/u:”* 

Me Local Mach number outside mean boundary layer 
R* Gas constant 
Re Reynolds number based on reference length 
Re, Length Reynolds number 

Bee Reynolds number based on momentum thickness 
To Stagnation temperature of external stream 
“e Momentum-thickness wave-number, 2nO/h 
Y Ratio of specific heats 
s Boundary-layer thickness 
8, 
8, 
E 

Thickness of viscous layer about critical point, of order (aRe)-* 
Thickness of viscous layer near wall 
Small parameter; (aRe)-* for Lees-Lin ordering, 

(aRe)-* for Dunn-Lin ordering - 
E Small parameter; (aRe,,)-* for present ordering 
V Kinematic viscosity 

7 Reynolds stress 
r Prandtl number 

Subscripts 

c .  
corr 

inv Inviscid 
0 Outer condition 

V Viscous 
W Quantity evaluated at  wall 

Quantity evaluated at  critical point 
Inviscid function corrected for viscous effects about critical layer 

e Local condition outside mean boundary layer (external) 

Quantity for neutral inviscid disturbance s 

A bar over a quantity indicates mean value. 
Primes generally denote differentiation with respect to y. The few instances where primes 

denote a fluctuating quantity should not cause any confusion. 


